
NDX -- BTREE INDEXING ROUTINES
Version 3.00

Copyright 1987,88,89,92 by George H. Mealy, all rights reserved

INTRODUCTION
This package implements yet another variant of the balanced tree
indexing method (Btree) described in section 6.2.4 of D. E.
Knuth's "Sorting and Searching", volume 3 of "The Art of
Programming." Its features are:

1. Files with variable length records can be
indexed. Data file format is arbitrary,
since an index is stored as a separate
file.

2. Keys are variable length ASCIZ strings.
The package allows retrieval on heads of
index keys: when retrieving on the search
key "FOO", records with keys "FOO",
"FOO1", "FOOP" and "FOOPU" may be
retrieved in that order. That is, a
search key may be matched by any key of
which it is a head. Matching can be case-
sensitive or case-insensitive. Search
behaviour is specified when the index is
opened.

3. ISAM access to index entries is avail-
able; it may be first-in-first-out or
last-in-last-out, as specified when the
index file is created.

4. Index file records are cached. A single
cache is used when more than one index
file is open.

5. The source file is supplied. The package
can be compiled using Turbo C version 1.
5+ or Microsoft C version 5.0+.

This package is copyrighted material. You may use it for
noncommercial purposes and make exact and complete copies for
others at cost. Modified versions of the package may NOT be
copied without express permission. In any case, no warranty of
any kind is made or implied by the author.
The author may be reached at (617) 545-1727.

INDEX FILE FORMAT
The index file begins with a short header, padded with enough
bytes to fill a 512 byte disk sector. (See NDX.H for the format
of the header and other data structures.) Nodes in the tree are
1024 bytes in length on the disk. Each starts with a value --
that of the node if it is currently in use, or that of the next
node in the chain of free nodes on the disk. The number of bytes
occupied by keys in the node follows, and then the keys.
Each KEY has three fields. First is the value, if not zero, of a
lower level node which has keys less than or equal to the current
key, followed by a reference to the place in the data file
corresponding to the current key. Finally, the ASCIZ key itself
is stored. Please note that only as many bytes as are necessary
are stored.
Immediately following the last key in the node, a pointer to the
next lower level may be stored; the field end_keys of NODE does
not include the length of this pointer.
The index structure INDEX is allocated and initialized when the
index file is opened. It contains:

1. A copy of the file header
2. A KEY structure which holds the key

resulting from index file operations.
3. A stack holding the path from the root of

the index to the current key entry.
4. The index file name and handle.
5. The string comparison function to be used

during key retrieval.



USAGE
The constructor
Index::Index(char *indexname, unsigned mode, CFN compfn)

creates an empty index file. The comparison function, if NULL,
defaults to strcmp. The mode is one of:

NODUPS No duplicate keys allowed
FIFO Duplicate keys are retrieved

first-in-first-out.
LIFO Duplicate keys are retrieved

last-in-last out.
The mode is stored in the index file header. A NULL second
argument defaults to NODUPS. The third argument is the routine to
be used for key matching -- if NULL, strcmp is used.

Index::Index(char *indexname, int (*compfn)())
is used to open an existing index file, while the destructor
closes an index file.

DWORD Index::insert(char *key, DWORD value);
adds a key to the index, except when the mode is NODUPS and the
key is already present. In this case, the value specified in the
call replaces the previous value. If successful, insert returns
the specified DWORD and otherwise it returns zero.
The value can be a long unsigned seek address used to reference
the data file, or just a serial record number when the data file
has fixed length records. A valid value may not be zero. The
comparison function used for insertion is always strcmp.

Index::remove(char *key, DWORD value);
deletes the key from the index. If this leaves an empty node, the
node is placed in the freelist. The second argument is required
due to the possibility of multiple occurrences of the same key.
Returns 0 for failure and 1 for success.

DWORD Index::find(char *key);
attempts to find the specified key, according to the comparison
function specified when the file was opened and the mode speci-
fied when the file was created. The value part of the key found
is returned on success; zero is returned on failure.
In order to find all occurences of a key when FIFO or LIFO
operation is in effect, use Index::find with a NULL second
argument after the first occurence has been found.

DWORD Index::first(unsigned last);
positions the index file pointer to the first (last) key in the
index. The "file pointer" is, strictly speaking, the top stack
entry and contains the seek address of the node and the offset of
the key in that node. The remainder of the stack records
information required for traveling over the index tree starting
from the file pointer, as if the index were flat rather than a
tree. Zero is returned if the index is empty, else the value part
of the key located is returned.

DWORD Index::next();
DWORD Index::prev();

These routines change the file pointer to the next or previous key
and return the value part of that key, or zero if the current file
pointer was at the end or beginning of the index.
Note that Index::find, Index::insert and Index::remove position
the file pointer. In the latter case, the file pointer is set to
the key following the deleted key. Note further that each
successful key retrieval stores a copy of the current key
structure in the index structure.
For examples of the use of the routines, see the test program.
IMPROVEMENTS
Knuth suggests ways in which the Btree algorithms may be improved.
If you decide to experiment, be prepared for an interesting [sic]
experience. Be particularly wary of any changes you attempt to
make in xdelete -- updating the index to properly reflect a
deletion is an extremely tricky affair. Even xnext and xprev,
which look deceptively simple, are easy to upset if you try to
change the order in which things are done.

CHANGES
My address is:

George H. Mealy
38 Gilson Road
Scituate, MA 02066
USA
(617) 545-1727

Version 2.02 corrected an egregious blunder in the Index::insert
routine, thanks to John A. Matzen. I also fixed a bug in Index::
find, thanks to strong type checking and use of the typedef CFN.
The package has been recompiled using Borland C++ v3.0.
The file NDX.DOC is a Word for Windows document.


